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ABSTRACT

A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F, plants derived from
cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism
(AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh
color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination
frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average
distance of 2.2 ¢M between adjacent markers. This map revealed severe suppression of recombination
around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine
bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and
-insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest
such as the sex determination gene and for the integration of genetic and physical maps of papaya.

APAYA (Carica papaya) is a member of the family
Caricaceae that is the flowering plant family closest

to the family Brassicaceae (which includes Arabidopsis,
whose genome is completely sequenced) (BREMER et al.
1998; ARABIDOPSIS GENOME INTTIATIVE 2000). Papaya is
a widely cultivated fruit crop in tropical and subtropical
regions worldwide. It is believed to be native to tropical
America where it has undergone a long period of selec-
tion (STOREY 1976). Papaya is polygamous with three
basic sex types: female, male, and hermaphrodite. Her-
maphrodite trees produce a pyriform-shaped fruit that
is preferred in the market. However, seeds from her-
maphrodite trees always segregate into hermaphrodites
and females at the ratio of 2:1 and the sex types of the
plants can be determined only by inspection of the
flowers. Therefore, it is a general practice for farmers
to plant three to five seedlings in one hill, allowing
them to grow for 4 to 6 months until the sex types are
identified, and then to remove the undesired plants to
develop the orchards with only hermaphrodite plants.
On the basis of segregation ratios from crosses among
three sex types, STOREY (1938) and HorMEYR (1938)
proposed that sex determination in papaya is controlled
by a single gene with three alleles: M, M", and m. Male
individuals (Mm) and hermaphrodite individuals (M"
m) are heterozygous, whereas female individuals (mm)
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are homozygous recessive. The dominant combinations
of MM, M"M", and MM" are lethal, resulting in a 2:1
segregation of dominant markers on the linkage group
(LG) where the sex determination gene is located.
Later, STorEY (1953) revised the hypothesis to state
that sex is determined not by one gene, but rather by
a complex of genes that are confined to a small region
on the sex chromosome within which crossing over is
precluded. The different segments in this region are so
closely linked together that they behave as unit factors.
HorMEYR (1967) proposed that the symbols M1 (M)
and M2 (M") represent inactivated regions of slightly
different lengths from which vital genes are missing.
On the basis of interspecific hybridization in Caricaceae,
HoroviTz and JiMENEZ (1967) proposed that the sex
determination is of XX-XY type. The genotype of the
male is XY, female XX, and hermaphrodite XY,, where
Y, is the modified Y chromosome. The Y chromosome
has a lethal region and the Y, chromosome preserves
this lethal region. A more recent modification of the
model proposed to explain the papaya sex expression
is that the three alleles encode different trans-acting
factors to direct the expression of the different flower
forms (SONDUR et al. 1996).

Papaya is diploid with nine pairs of chromosomes
and a small genome size of 372 Mbp (STOREY 1941;
ARUMUGANATHAN and EARLE 1991). Over the past 10
years, three major advancements have enhanced papaya
genetic and genomic research:

i. Transgenic improvement. Papaya transformed with
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TABLE 1
List of AFLP primers used in linkage mapping in papaya

Primer Code Primer Code Primer Code Primer Code Primer Code
M-CAA 01 M-ATGA 19 E-AAC 01 E-GT 19 E-GTT 37
M-CAC 02 M-ATGG 20 E-AAG 02 E-AA 20 P-AGG 51
M-CAG 03 M-CAGG 21 E-ACA 03 E-AG 21 P-AGT 52
M-CAT 04 M-CAAT 22 E-ACC 04 E-GAA 22 P-ACA 53
M-CTA 05 M-CATT 23 E-ACG 05 E-GAC 23 P-ACC 54
M-CTC 06 M-CTTA 24 E-ACT 06 E-GAG 24 P-ACG 55
M-CTG 07 M-AA 25 E-AGC 07 E-GAT 25 P-ACT 56
M-CTT 08 M-AC 26 E-AGG 08 E-GCA 26 P-AAT 57
M-CA 09 M-AG 27 E-AAT 09 E-GCC 27 P-AGC 58
M-CC 10 M-AT 28 E-AGT 10 E-GCG 28 P-AGA 59
M-CG 11 M-GA 29 E-ATC 11 E-GCT 29 P-AAG 60
M-CT 12 M-GC 30 E-ATT 12 E-GGA 30 P-ATC 61
M-ACAA 13 M-GG 31 E-AGA 13 E-GGC 31 P-ATA 62
M-ACAT 14 M-GT 32 E-ATA 14 E-GGG 32 P-AAC 63
M-ACTG 15 M-TA 33 E-ATG 15 E-GGT 33 P-AAA 64
M-ACTT 16 M-TC 34 E-GA 16 E-GTA 34 P-ATT 65
M-AGCT 17 M-TG 35 E-GC 17 E-GTC 35 P-ATG 66
M-AGGC 18 M-TT 36 E-GG 18 E-GTG 36

the papaya ringspot virus coat protein (PRSVCO)
gene was successfully developed and released to save
Hawaii’s papaya industry from collapse because of
susceptibility to papaya ringspot virus disease (FrrcH
et al. 1992; GONSALVES 1998).

ii. Sex-linked DNA markers. Four sequence-character-
ized amplified region (SCAR) markers tightly linked
to sex forms were developed (PARASNIS el al. 2000;
DepruTyY et al. 2002; URASAKI et al. 2002) as ways to
sex the plant prior to flowering since known sex-
linked vegetative characters are too far from the sex-
determining locus to be of practical use. These DNA
sex markers are now used in selection of desired
sex types at the seedling stage for more efficient
papaya production (DEpUTY et al. 2002).

iii. The genetic linkage map. The first genetic map was
reported more than 60 years ago and consisted of
only three morphological markers: sex form, flower
color, and stem color (HorMEYR 1939). In 1996,
SONDUR et al. (1996) developed a second map based
on 62 randomly amplified polymorphic DNA (RAPD)
markers and mapped the sex determination gene
on linkage group 1.

Considerable efforts have gone into the genetic map-
ping of many plant species. High-density genetic map-
ping not only is the first step toward isolating and clon-
ing the genes of interest via chromosome walking or
chromosome landing but also is an important tool for
genomic dissection, marker-assisted selection, compara-
tive analysis of the plant genomes, and integration of
genetic, physical, and cytomolecular maps (MARTIN et
al. 1993; TANKSLEY el al. 1995; KLEIN ef al. 2000; PATER-
SON et al. 2000; DRAYE et al. 2001). Genetic linkage maps

have been reported for many plant species over the last
15 years. However, high-resolution genetic maps, which
are essential for genomic studies, have been limited to
the model plant Arabidopsis (PETERS et al. 2001) and
to major crop species, such as maize (DAv1s ef al. 1999),
rice (HARUSHIMA e¢f al. 1998; WU et al. 2002), tomato,
potato (TANKSLEY et al. 1992; HAANSTRA et al. 1999),
wheat (Boyko et al. 2002), soybean (Kem et al. 1997),
and rapeseed (LoMBARD and DELOURME 2001).

Among the crop species, the genetic mapping of pa-
paya lagged behind that of many other plant species,
due partly to the low level of polymorphism among
existing germplasm (SHARON et al. 1992; STILES et al.
1993; Kim et al. 2002). The objective of this study was
to develop a high-density genetic map of papaya and to
characterize its sex locus. This map will serve as the first
and essential step for conducting extensive genomic
research on this crop.

MATERIALS AND METHODS

Plant materials: The F, mapping population was grown at
the Kunia substation on Oahu, Hawaii, along with the parents
Kapoho, SunUp, and a set of F, plants. Plant tissues from
young leaves of 34 hermaphrodite and 20 female plants were
collected for DNA isolation.

AFLP analysis: DNA extraction protocol used to extract the
papaya DNA was described previously (STEIGER et al. 2002).
Amplified fragment length polymorphism (AFLP) analyses
were performed on a Li-Cor IR? automated DNA sequencer
(Li-Cor, Lincoln, NE) with selective amplification prepared
from fluorescent-labeled EcoRI or Psi primers and Msel prim-
ers as described by Kim et al. (2002). Selective amplifications
were carried out using various combinations of two- to four-
nucleotide extensions to FcoRI (E-) or Psil (P-) primers with
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Msel (M-) primers (E-2/M-2, E-2/M-3, E-2/M-4, E-3/M-3, E-3/
M-2, P-3/M-2, P-3/M-3, and P-3/M-4; Tablel).

Map construction: Goodness of fit was tested by chi-square
analysis for the expected segregation of dominant (3:1), sex-
linked (2:1), and codominant (1:2:1) markers in the F, popula-
tion. The linkage map was constructed using the program
MAPMAKER 3.0 (LANDER et al. 1987) employing a minimum
LOD score of 5.0 and a maximum recombination rate (0) of
0.25. First, the codominant markers were used for defining
linkage groups. After this, the codominant markers in a total
of nine linkage groups were combined with the middle-sized
(80-350 bp) markers, fitting either 3:1 or 2:1 ratios, and as-
signed to linkage groups. After ordering the markers in each
group, the anchor markers were selected at regular intervals
(one marker/15-20 cM). The anchor markers were mixed
with all the remaining markers for a final grouping and order-
ing by using “first order,” “try,” and “ripple” functions of the

oY e

-

program. Linkage maps were generated using the Kosambi
mapping function.

Poisson distribution test: Marker distribution on our map
was determined by counting the number of AFLP markers in
a sliding 10-cM interval over the total length of each linkage
group. The AFLP marker distribution was analyzed using a
Poisson distribution function P(x) = ¢ *w*/xl, where p is the
average number of markers in a 10-cM interval over the entire
map and x is the actual marker count in each interval.

Marker distribution and DNA methylation analysis: At any
site where the number of markers in the interval was greater
than, or equal to, the minimum upper limit number of mark-
ers of the chi-square-tested expectation, that site was desig-
nated as a cluster. The distribution of PsiI/ Msel markers was
compared to that of the EcoRI/Msel markers. If methylation
occurred randomly throughout the genome, the frequency
of Pstl/ Msel markers in each linkage group or on the sex locus
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TABLE 2

AFLP fragments generated with different primer combinations

Msel-** Msel-+##% Msel-F#%%

No. of No. of No. of No. of No. of No. of
Primers bands markers bands markers bands markers
EcoRI-A* 78 1.1
EcoRI-G* 67 1.4 50 1.4 43 1.3
EcoRI-A** 73 2.5 53 1.9 31 1
EcoRI-G** 59 2
Pstl-A%* 50 1.2 39 1.4 38 0.6

Asterisks represent any one, two, three, or four of the four nucleotides (A, T, G, or C).

would be expected to be equal to the frequency of EcoRIl/ Msel
markers observed in the same group or region. Significant
deviation from an equal distribution supports the hypothesis
of an alternate methylation status.

RESULTS

DNA polymorphism: The genomic DNA of parental
cultivars Kapoho and SunUp, with F, and 54 F, plants,
was amplified with 987 AFLP primer combinations (Ta-
ble 1). Of the 987 primers, 781 generated 58,173 bands.
A portion of a TIF image for AFLP products amplified
by the primer pair E-GCT/M-AG is shown in Figure 1.
The number of nucleotides in EcoRIl/ Msel and Pstl/ Msel
primer extensions were significantly correlated to the
number of bands (r = —0.8703%*%*) but not to the num-
ber of markers (r = —0.3468). A two-nucleotide exten-
sion of Msel-** primer with a two-nucleotide extension
of EcoRI-A* generated the most bands, with an average
of 78 bands/primer pair (Table 2). A two-nucleotide
extension of Msel-** primer with a three-nucleotide ex-
tension of EcoRI-A** generated the most polymorphic
markers, with an average of 2.5 markers/primer pair.

Of the 987 primer pairs used in this study, 106 did
not generate any polymorphic markers; the remaining
881 primer pairs generated 1812 AFLP markers. Theo-
retically, the AFLP markers generated by the shorter
nucleotide extension primer pairs should include the
markers generated by longer nucleotide extension
primer pairs as well as additional new markers. Forty-
five of the EcoRI/ Psd and Msel primer pairs having two
to four extra nucleotide extensions were found to gener-
ate redundant markers. After pairing the data set to
remove the redundant markers, a total of 1767 polymor-

phic markers, ranging from 25 to 700 bp, remained for
linkage analysis

Among all 1767 markers, 644 were derived from the
female parent, Kapoho, 983 were from the hermaphro-
dite (pollen donor) parent, SunUp, and 140 were inher-
ited in a codominant fashion. Each primer pair gener-
ated an average of 1.8 polymorphic markers. The EcoRI/
Msel primer pairs generated more polymorphic markers
than the Pstl/ Msel primer pairs did, with an average of
2.0 and 1.2 markers, respectively.

Segregation analysis: The x* test showed that 71.4%
of the AFLP markers fit the expected 3:1 and 1:2:1
Mendelian segregation ratios. When the papaya sex-
linked segregation (2:1) markers were added, those fit-
ting the expected ratios increased to 89.4%. The re-
maining 187 markers were skewed significantly from the
expected ratios.

Genetic linkage map: A total of 1501 markers, includ-
ing 1498 AFLP markers, the papaya ringspot virus coat
protein marker, morphological sex type, and fruit flesh
color, were mapped into 12 linkage groups at a LOD
score of 5.0 and a recombination frequency of 0.25.
The 12 major linkage groups covered a total length of
3294.2 cM, with an average distance of 2.2 cM between
adjacent markers. The remaining 269 AFLP markers
were assigned into smaller groups or remained unlinked.
Our linkage group 1 corresponded to the LG1 of the
RAPD map where the sex locus was located (Figure 2;
SONDUR et al. 1996). Because we have no common mark-
ers with the previous RAPD map, we designated LGs
2-12 in descending order according to the length of
each group generated from our AFLP data (Figure 2).

Striking features of LGI include 225 markers that

»

|

FIGURE 2.—AFLP genetic map of papaya linkage groups 1-12. The sex determination locus was mapped on LG1 with 225
cosegregating markers. Transgenic PRSVCO and Fcolor were mapped on LG7. The alphanumeric code describes the AFLP
marker as scored. The first letter of the marker represents the size category of the fragments (“S,” <80 bp; “M,” 80 ~ 350 bp;
and “L,” >350 bp); the four numerals following represent EcoRI-/PstI- and Msel-primer combination code (see Table 1), and
the first two numerals are the code for the EcoRI- or PstI-primer, while the last two numerals are the code for the Msel-primer;
the sixth element of the code is an alphabetical order of the polymorphic loci generated by each primer pair; then the seventh
element indicates from which parent the marker was derived (K, Kapoho; S, SunUp; C, codominant); the last element of the
code is information about the x? test (0, not fit expected segregation; 2, fit 2:1; 3, fit 38:1; 5, fit 2:1 and 3:1; C, fit 1:2:1).

Cosegregating markers are in boxes.
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cosegregated with the sex locus and all 344 dominant
markers on LG1 that were derived from the pollen do-
nor parent SunUp.

The PRSVCO and fruit flesh color (Fcolor) were
mapped to LG7 where each was flanked by two markers
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thatwere 3.7/4.7 cM and 3.4/3.7 cM distant from them,

respectively (Figure 2).

Distribution of AFLP markers over the papaya ge-
nome: The distribution of the AFLP markers over the
12 linkage groups varied greatly. LG1 had the highest
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marker density (0.85 cM/interval), while LG10 had the
lowest (3.9 cM/interval). The number of markers per
linkage group ranged from 27 to 400; the length of the
linkage groups ranged from 86.2 to 695.3 cM. Under
the assumption of random marker distribution, the
number of 10-cM intervals containing a given number
of markers would follow a Poisson distribution. Our
observed and expected number of frame markers/10-
cM interval for all the linkage groups deviated signifi-
cantly from Poisson expectations (x* = 717.42, d.f. =
8, P < 0.0001; Figure 3). The deviation was greatest in
those intervals containing 1, 7, or >7 markers.

A x? test confirmed that the mapped AFLP markers
were not evenly distributed throughout the linkage
groups. Clustering was prevalent for all markers, frame
markers (markers on each linkage group excluding co-
segregating markers), and EcoRI-only frame markers in
each group analyzed (Table 3). Although Psi frame
markers distributed evenly when the x* test included all
the linkage groups, in LG1 (obs = 5; exp = 13) and
LG6 (obs = 21; exp = 11), they still deviated signifi-
cantly from the expected number.

On the basis of the total number of frame markers
and the length of the linkage groups, 6 markers/interval
would be the minimum upper limit for the number of
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markers that is statistically different from the average
of 2.2 markers/10 cM (P = 0.05). When the frame
markers were counted, 14 clusters were identified on 8
linkage groups. When the cosegregating markers were
included in the analysis, 59 clusters were identified on
the 12 linkage groups. The cluster covering the sex locus
and containing 232 markers is the largest among the
59 clusters.

DNA methylation analysis: If the EcoRI and Psi restric-
tion sites were distributed randomly throughout the
genome and the genome were not methylated, then
the Psfl markers should occur in each linkage group
at the same frequency as the FEcoRI markers. This was
not the case. We calculated a significant deviation from
equal distribution of the Psfl markers in all the linkage
groups (Table 3). This deviation was caused mainly by
LGI (obs = 28, exp = 50) and LG2 (obs = 45, exp =
58). These results suggest a higher level of DNA methyla-
tion for LG1 and LG2 compared to the level of methyla-
tion in the other 10 linkage groups.

We assessed the potential level of DNA methylation
of the sex locus by determining the frequency of sex
cosegregating markers derived from FEcoRI/Msel vs.
those from the PsiI/ Msel primer pairs. A total of 16.3%
of the 1285 mapped markers or 14.2% of all the 1479
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polymorphic markers produced by EcoRI/ Msel primers
cosegregated with sex; only 7.3% of the 204 mapped
markers or 5.2% of all 288 PsiI/ Msel markers cosegre-
gated with sex. Thus, there were significantly fewer (P <
0.01) Psil/ Msel markers than EcoRI/ Msel markers associ-
ated with the sex locus.

DISCUSSION

Characteristics of the sex determination locus: A total
of 225 markers, or a total of 66% of all 342 markers on
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F1Gure 3.—The distribution of AFLP markers compared to
that expected by Poisson distribution.
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LGI1, cosegregated with the sex determination locus.
Our results showed that recombination was severely sup-
pressed in the region surrounding the sex determina-
tion locus and validated the hypothesis that crossing
over is repressed within the region containing the sex
determination gene of papaya so that it behaves as a
unit factor (STOREY 1953). DNA sequence divergence
often causes regional suppression of recombination
(LukacsovicH and WALDMAN 1999). The large number
of cosegregating markers at the sex determination locus
suggested extensive sequence divergence resulting in a
high polymorphism rate. This might be the conse-
quence of evolution to preserve the function of the sex
determination gene that led to dioecy. Suppression of
recombination was reported around another gene with
evolutionary significance that controls apospory in
buffelgrass (Oz1as-AKINS et al. 1998; JEssuP et al. 2002).

All 342 dominant markers on LG1 were derived from
the pollen donor parent SunUp, and all but 2 of these
markers fit a 2:1 segregating ratio. This situation arises
from the lethal effect of the homozygous dominant ge-
notype at the sex determination locus. For a dominant
marker linked to the recessive sex allele m from the
female parent Kapaho to be mapped, its counterpart
recessive marker (absent band) is linked to the domi-
nant sex allele M" from the hermaphrodite parent
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TABLE 3

x? tests for the distribution of AFLP markers among the linkage groups

Marker types x* value Linkage groups

All the markers 480.35%#%* LG1,##% LG3,##* LG4,*** LGb,*** LG8,*** LGY,** LG11*
Frame markers 27.51%* LG3,* LG6,*** LG7*

EcoRI frame markers 25.71%* LG3,** LG6,** LG7*

Pstl frame markers 16.29
All the Pstl markers 33.43%**

LG1,* LG6%**
LGI1,##* LG2%

*Significance level at 0.5, **significance level at 0.1, ***significance level at 0.01.

SunUp since only one hermaphrodite F, plant was used
to generate the mapping population. When the seeds of
homozygous dominant genotypes (M"M") were aborted,
the class of homozygous recessive markers as the coun-
terparts to the Kapaho-derived dominant markers were
aborted as well. The segregating ratio of sex-linked dom-
inant markers from Kapoho become 3:0 and thus can-
not be mapped.

Excluding the SunUp dominant markers on LG1, the
dominant markers derived from each parent are almost
equal: 644 from Kapoho and 639 from SunUp, sug-
gesting a similar level of genetic variation on each paren-
tal cultivar as reported previously (Kim et al. 2002).

It is known that DNA markers are clustered in the
centromeric region due to the suppression of recombi-
nation in the heterochromatic regions surrounding cen-
tromeres (ALONSO-BLANCO et al. 1998; COPENHAVER e/
al. 1999; HAANSTRA et al. 1999). However, the scale of
suppression of recombination that we found at the sex
determination locus of papaya has not been previously
reported in any centromeric clusters found in high-
density maps of any other plant species (DAVIS et al.
1994; ROUND et al. 1997; BOoYKO et al. 2002; MENZ et al.
2002). Suppression of recombination in the papaya sex
region is less likely the effect of the centromere and
more likely the consequence of sex evolution in this
plant species. This hypothesis is supported by the fact
that another four clusters with at least seven cosegregat-
ing markers are mapped on this linkage group. Because
several marker clusters, not just one, were mapped on
LGs 2-8, it is difficult to predict the position of centro-
meres.

DNA methylation: In LGI, the sex locus had an ex-
tremely low frequency of Psil markers. The lower level
of sex cosegregating markers generated by the methyla-
tion-sensitive enzyme than by the nonsensitive enzyme
indicates that the cytosine bases are highly methylated
around the sex locus. A positive correlation has been
reported for other plant species among marker clusters,
centromeric regions, high levels of cytosine methyla-
tion, and heterochromatic regions (VUYLSTEKE el al.
1999; YOUNG et al. 1999). Our analysis of DNA methyla-
tion is in accord with the marker cluster results. Since
most expressed genes are associated with hypomethyl-

ated regions (YOUNG et al. 1999), our results suggest
that relatively few active genes are located around the
sex locus of papaya. These results strongly support the
hypothesis that Hofmeyr proposed more than 30 years
ago (HorMmEYR 1967).

High-density genetic map: Although our high-density
linkage map was constructed from 1767 AFLP markers,
2 morphological markers, and 1 transgene marker, gaps
still remain. A total of 1501 markers were mapped
into 12 linkage groups corresponding to the nine pairs
of chromosomes. Theoretically, the 3 “extra” linkage
groups should eventually cojoin the other 9 groups to
eliminate those gaps that are so large they currently
necessitate the reported 12 linkage groups. The differ-
ences in length among the linkage groups might be
due to recombination rate and nucleotide composition
difference of each chromosome, or they may be due
to chromosomal translocations during meiosis and/or
methods used in our map construction.

If chromosomal translocation had occurred, at least
half of the seeds derived from F; might not be viable
(KLuG and CuMMINGs 1994). A seed germination test
that we conducted (data not shown) failed to support
the hypothesis that a translocation event was the basis
for the large linkage groups. The largest linkage group,
LG2, likely represents more than one chromosome since
cytological observations indicate its chromosomes are
physically similar in size (STOREY 1941). However, we
were not able to break this linkage group using our
current mapping population and the type of DNA mark-
ers used. This may be resolved in the future by integra-
tion of the genetic and physical maps of papaya and by
chromosome in situ hybridization of selected bacterial
artificial chromosome clones on the physical map.

Crop species such as maize, rice, and sorghum have
a bigger genome size than papaya (ARUMUGANATHAN
and EArLE 1991), but the lengths of their high-density
genetic maps are <2000 cM (HARUSHIMA el al. 1998;
VUYLSTEKE et al. 1999; MENZ et al. 2002). Although pa-
paya has a relatively smaller genomic size, the length of
its genetic map is 3294.2 cM. This disparity could be
due partially to a high genome homology between the
two papaya parental cultivars that were derived from
the same gene pool (Kim et al. 2002). A higher genome
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homology results in a higher recombination rate, which
expands the genetic map. For example, in potatoes, the
genetic map generated from an intraspecific cross is
165% the size of the map from an interspecific popula-
tion (BONIERBALE et al. 1988; GEBHARDT et al. 1991).
Another reason for the large size of the papaya map is
the nature of dominant markers that were used for its
construction. Since dominant markers represent both
homozygous and heterozygous dominant genotypes,
the resolution of dominant markers is 50% lower than
that of codominant markers for mapping in an F,; popu-
lation of a diploid species. The direct effect of mapping
dominant markers expands the map size by 50%.

The inserted PRSVCO was mapped on LG7 on this
high-density linkage map, verifying that there was a sin-
gle insertion when this gene was transformed (FrrcH et
al. 1992). Currently, a high-density map of the inserted
gene is required for registering genetically modified
food products. This map can be used for registration
of transgenic papaya in foreign countries to open new
markets.

Papaya breeders have long been interested in devel-
oping DNA markers linked to fruit flesh color for selec-
tion. Dominant yellow color is associated with firmness,
while recessive red color is associated with good flavor
but shorter shelf life. Experiments are underway to de-
velop SCAR markers linked to flesh color from the
flanking AFLP markers on LG7.

Efficiency of the length of nucleotide extension: The
number of amplified products generated by the AFLP
technique is theoretically related to the size of the ge-
nome and the length of the nucleotide primer exten-
sions (Vos et al. 1995). Papaya has a relatively small
genome with 372 Mb (ARUMUGANATHAN and EARLE
1991). The combination of EcoRI-A** primer with Msel
primer that contained two-, three-, and four-nucleotide
extensions gave 73, 53, and 31 bands, respectively (Table
2). As reported for barley, flax, and onion (VAN TREU-
REN 2001), shortening the nucleotide extension in-
creased the number of bands in steps by 1.7- and 2.4-
fold. This was considerably less than the 4-fold increase
expected on a theoretical basis. However, the varied
length of extended nucleotides of primers from four to
seven in our study resulted in a statistically significant
negative correlation with the number of amplified prod-
ucts.

Likewise, the number of polymorphic markers was
notstrictly related to the length of nucleotide extensions
of the primer pairs. The short length of selective nucleo-
tides, such as two-nucleotide extensions of EcoRI-A* and
EcoRI-G* with Msel-**, produced less informative pro-
files than did a three-nucleotide extension of the same
EcoRI primer with Msel-**. The reasons for the less infor-
mative profile appear to be saturation and homoplasy,
which were produced during selective amplification.
Saturation and homoplasy have been reported in a
range of crop species (VAN TREUREN 2001). Other plant

species may have optimal nucleotide extensions for an
effective AFLP amplification on the basis of fragment
saturation and homoplasy (HAN et al. 1999). In papaya
the five primer extensions of EcoRI-A**/Msel-#* and
EcoRI-G** / Msel-** were most efficient for AFLP marker
generation (Table 2). The Psi primers generated fewer
markers than the EcoRI primers did, possibly because
the Psi restriction nuclease is a methylation-sensitive
enzyme and large portions of plant genomes are methyl-
ated (INAMDAR et al. 1991; WARNER 1996; YOUNG et al.
1999), thus dramatically reducing the number of restric-
tion sites.

Polymorphisms and segregation: Although the primer
pairs of EcoRI-A**#, EcoRI-G**, and PstI-A** with Msel-**
resulted in an average of 73, 59, and 50 bands, respec-
tively (Table 2), the number of bands is fewer than that
produced in other plant species such as Alstroemeria spp.
(HAN et al. 1999), lettuce (VAN TREUREN 2001), sugar-
cane (Hoaravu et al. 2001), and tomato (HAANSTRA et
al. 1999). Also each primer pair generated an average
of only 1.8 AFLP markers in papaya, which is very low
compared to polymorphism observed in other plant
species such as Populus deltoids (Wu et al. 2000), tomato
(HAANSTRA et al. 1999), rice (MACKILL et al. 1996), and
Arabidopsis (PETERs et al. 2001). The low rate of poly-
morphic AFLP markers in papaya is the result of the
low level of polymorphism between the two original
parents, since Kapoho and SunUp are both Hawaiian
Solo types derived from the same gene pool. This is at
first surprising because the two parents are morphologi-
cally quite different. This result is consistent with other
reports that papaya has a narrow genetic base (SHARON
et al. 1992; STILES et al. 1993; SONDUR et al. 1996; Kim
et al. 2002).

The effect of AT/GC content in selective nucleotide
sequence: The effect of AT/GC content in selective
nucleotide sequences on the number of AFLP bands
has been reported in soybean (KemM et al. 1997), Als-
troemeria (HAN et al. 1999), and Pinyon pine (TrAvis
et al. 1998). Those studies used EcoRl/ Msel primer pairs
and showed that a high level of GC content will produce
a low number of bands for soybean and Alstroemeria,
but a high number of bands for pinyon pine. Our data
were generated from both FEcoRI/Msel and Pstl/ Msel
primer pairs and indicated that the number of AFLP
bands and markers was not statistically associated with
either the AT or the GC content of the nucleotide exten-
sions in the primers. However, AT-rich EcoRI and Psil
selective nucleotide primers produced significantly
more sex cosegregating markers than did the GC-rich
primers. In Alstroemeria aurea, DE JEU et al. (1997) found
that heterochromatic regions were related to AT-rich
sequences. A more detailed description of the genomic
structure of the papaya sex locus will require studies
involving in situ hybridization and sequence analyses.

Marker clusters: Because greatly suppressed recombi-
nation would produce an apparent tight clustering of
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markers while high levels of recombination would pro-
duce widely dispersed markers, the clusters found in our
linkage map can be interpreted as reflecting possible
chromosome structures. A similar pattern has been re-
ported for other plant species, including tomato (TANK-
SLEY el al. 1992), Arabidopsis (ALONSO-BLANCO et al.
1998), soybean (YOUNG et al. 1999), and maize (VUYLS-
TEKE et al. 1999). In those cases, marker clusters were
frequently associated closely with the chromosome cen-
tromere. If we limit our present analysis to only the
frame markers, papaya has only a few marker clusters
that are present on only eight linkage groups. A possible
reason for this paucity of clusters in papaya compared
to other plant species, with the notable exception of
Arabidopsis, could be the small size of the Arabidopsis
and papaya genomes with a greatly reduced “junk” DNA
component in the heterochromatin regions. Notably, if
the cosegregating markers were added to the analysis,
the sex locus is the biggest cluster. This indicates that
the sex locus is particularly differentiated from the other
cluster regions in our map.
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